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Thermophilic streptococci play an important role in the manufacture of many European cheeses, and a rapid
and reliable method for their identification is needed. Randomly amplified polymorphic DNA (RAPD) PCR
(RAPD-PCR) with two different primers coupled to hierarchical cluster analysis has proven to be a powerful
tool for the classification and typing of Streptococcus thermophilus, Enterococcus faecium, and Enterococcus fae-
calis (G. Moschetti, G. Blaiotta, M. Aponte, P. Catzeddu, F. Villani, P. Deiana, and S. Coppola, J. Appl. Micro-
biol. 85:25–36, 1998). In order to develop a fast and inexpensive method for the identification of thermophilic
streptococci, RAPD-PCR patterns were generated with a single primer (XD9), and the results were analyzed
using artificial neural networks (Multilayer Perceptron, Radial Basis Function network, and Bayesian net-
work) and multivariate statistical techniques (cluster analysis, linear discriminant analysis, and classification
trees). Cluster analysis allowed the identification of S. thermophilus but not of enterococci. A Bayesian network
proved to be more effective than a Multilayer Perceptron or a Radial Basis Function network for the identifi-
cation of S. thermophilus, E. faecium, and E. faecalis using simplified RAPD-PCR patterns (obtained by sum-
ming the bands in selected areas of the patterns). The Bayesian network also significantly outperformed two
multivariate statistical techniques (linear discriminant analysis and classification trees) and proved to be less sen-
sitive to the size of the training set and more robust in the response to patterns belonging to unknown species.

A large variety of genotypic and phenotypic methods are
currently used for the identification and classification of mi-
croorganisms (32). Many of these techniques generate complex
patterns whose interpretation for classification and identifica-
tion purposes requires multivariate statistical techniques. Ran-
domly amplified polymorphic DNA (RAPD) PCR (RAPD-
PCR) is one of the most popular genotypic typing techniques.
It was developed to reveal intra- and interspecific differences in
bacterial genomes (33, 35), and since it can be performed not
only on purified DNA (35) but also on untreated (19) or lysed
cells without DNA extraction (23), it can replace time-consum-
ing restriction endonuclease analysis in strain typing and DNA-
DNA hybridization techniques for species identification. In
fact, RAPD-PCR has been used for the classification of a
variety of food-borne microorganisms, including Saccharomy-
ces spp. (21), Bacillus spp. (30), Lactococcus spp. (31), Lacto-
bacillus spp. (3, 7, 28), Penicillium spp. (8), and Streptococcus
and Enterococcus spp. (23).

Statistical treatment of RAPD-PCR patterns usually in-
volves calculation of a similarity matrix and use of hierarchical
cluster analysis for grouping of the patterns. Similarity can be
calculated using the formula of Nei and Li (24) when only the
presence or the absence of bands is scored (21, 23), while
Pearson’s product-moment correlation coefficient is used when

both the position and the intensity of bands are measured with
image analysis software (3, 28, 31). Although unknown isolates
can be assigned to a species on the basis of their similarity to
identified strains, this approach is still more adequate for clas-
sification than for identification (as defined in reference 29). In
fact, the observed intraspecific similarity levels may be as low
as 40%, the metric and ultrametric conditions for best perfor-
mance of hierarchical cluster analysis (9) are not necessarily
met, the calculation of similarity or distance measures and
clustering must be repeated for the classification of new iso-
lates, and the fuzzy nature of RAPD-PCR patterns (with the
occurrence of major and minor bands) may complicate the
analysis. Once a database of identified patterns is available,
discriminant analysis (20) or regression and classification trees
(CT) (4) may be used to assign unknown patterns to estab-
lished groups (species).

In linear discriminant analysis (LDA), the linear functions
(canonical variables) of the variables that provide the best
discrimination of cases in two or more predefined groups are
estimated, and cases are attributed to the group for which the
classification function provides the highest value or, equiva-
lently, to the group whose centroid is nearest. Canonical scores,
Mahalanobis distances, and posterior probabilities are also
calculated. Violation of the statistical assumptions often has a
minor effect (20), making LDA a popular technique. CT are an
appealing alternative to LDA. The data set is divided into a
series of branches using the value of a splitting variable at the
nodes chosen to minimize a loss function; this procedure ef-
fectively results in a dichotomic key for the identification of

* Corresponding author. Mailing address: Dipartimento di Biologia,
Difesa, e Biotecnologie Agro-Forestali, Università degli Studi della
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cases. However, the efficiencies of both of these techniques
may be reduced by violation of the underlying statistical as-
sumptions and by the inadequacy of the database used to build
the models.

Artificial neural networks (ANNs) are a valuable alternative
to multivariate statistical methods for the analysis of data
structures which are complex, nonlinear, fuzzy, probabilistic,
and inconsistent (15). ANNs simulate in software the behavior
and properties of biological neural networks, such as the hu-
man brain. An ANN is made of simple processing units, called
neurons (Fig. 1). Artificial neurons are linked in a variety of
architectures to other neurons by means of connections called
synapses, making up a network. Neurons in the input layer
receive stimuli from the “external” environment, while neu-
rons in the hidden and output layers receive their inputs from
other neurons and produce outputs by using the weighted sum
of inputs as an argument for an activation function. The syn-
aptic weights are adjusted during a training process using a
learning algorithm. Thus, ANNs learn to perform their task by
experience, and their knowledge is stored in the synaptic

weights. The learning process can be supervised (i.e., each set
of input signals is paired with the desired response during
training) or unsupervised (i.e., no response is paired to the
input patterns and the network is allowed to create its own
representation of the data). After training is completed, ANNs
can be used repeatedly to solve a given identification, classifi-
cation, or prediction problem. Important properties of prop-
erly designed and trained ANNs are as follows (15): (i) their
ability to generalize, i.e., to provide reasonable outputs to
inputs not seen before; (ii) their ability to process nonlinear
problems, due to the presence of multiple layers of neurons
and/or to the use of nonlinear activation functions; and (iii)
their fault tolerance, i.e., their ability to produce reasonable
outputs even if inputs are degraded (for example, because of
missing or inconsistent data).

Several types of supervised ANNs have been used for iden-
tification problems. The most popular model is the Multilayer
Perceptron (MLP) trained by a backpropagation algorithm,
but a Radial Basis Function network (RBF) or a Bayesian
network (BN), which differ in architecture and/or in the train-

FIG. 1. (A) Schematic representation of an artificial neuron. The neuron is a simple processing unit connected to other neurons by synapses.
A synaptic weight (wi) is associated with each synapsis. An output y is produced by using the weighted sum (z 5 Sxiwi) of its inputs (xi; x0 is fixed,
and the product x0w0 is known as bias) as an argument of the activation function f(z). Different types of activation functions (nonlinear sigmoid
functions as the logistic and hyperbolic tangent, but also threshold or linear functions) can be used. (B) Architecture of the ANNs used in this study.
All types of networks used as an input the number of bands in selected molecular weight (in kilobases) intervals of the RAPD-PCR patterns and
had three output nodes, one for each of the three species to be identified (EFM, E. faecium; EFS, E. faecalis; and ST, S. thermophilus). Both the
MLP and the BN had a hidden layer with five nodes and used hyperbolic tangent activation functions, but they differed in the algorithm used to
iteratively adjust the synaptic weights during supervised training (see the text for details). The hidden layer of the RBF was made up of 25 centers.
For each of these, the Euclidean distance between an input pattern and the center was used as an argument of a nonlinear radial basis function,
and the result was passed to the output nodes, which in turn had a linear activation function. The number and coordinates of the centers in the
input space and the synaptic weights of the output neurons were adjusted during supervised training.
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ing algorithm (Fig. 1), can also be used (15, 34; networks are
discussed in Neural Connection 2.0 User’s Guide, SPSS Inc.,
Chicago, Ill.). Requirements (metric or statistical) on the input
data for ANNs are less stringent than those for corresponding
statistical methods (regression analysis, discriminant analysis,
cluster analysis, and so forth); continuous, categorical, and
symbolic data can be easily analyzed with supervised and/or
unsupervised networks, which often prove to be superior to
and more robust than conventional statistical or modeling ap-
proaches (15).

ANNs have been successfully exploited for the identification
of microorganisms at the genus, species, or strain level using
complex patterns, such as restriction patterns (5), whole-cell
protein analysis (12), signature lipid biomarkers (2), pyrolysis-
mass spectrometry (10, 14), fatty acid composition (11, 12),
flow cytometry data (34), and phenotypic characters (16), and
for the interpretation of patterns generated for the analysis of
microbial communities (25, 26). Although supervised ANNs
have recently been applied to the separation of Registered
Designation of Origin fermented foods from different areas
based on metabolic profiles of lactic acid bacteria (18), to our
knowledge there is no report of the application of ANNs for
the identification of industrially important bacteria.

Streptococcus thermophilus and other thermophilic strepto-
cocci, including Enterococcus faecalis and Enterococcus fae-
cium, are among the dominant members of the microflora of
many cheeses produced with the use of natural starter cultures
(6, 13, 17, 22, 27). The identification of thermophilic strepto-
cocci with phenotypic tests is often not conclusive, due to the
frequent occurrence of abnormal biochemical patterns in
strains isolated from natural populations (23). Because of the
industrial importance of thermophilic streptococci and of the
potential public health significance of some enterococci (13),
rapid and reliable techniques for the identification and typing
of these species are needed. In a previous work (23), a poly-

phasic approach (32) was used for the classification of thermo-
philic streptococci isolated from dairy sources; RAPD-PCR
proved to be an effective tool for both identification and typing
of S. thermophilus, E. faecalis, and E. faecium. However, two
different primers were needed, and the traditional approach to
the analysis of data (calculation of a similarity matrix and
hierarchical cluster analysis) was cumbersome and time-con-
suming. The objective of this work was therefore to compare
ANNs with multivariate statistical techniques (cluster analysis,
LDA, and CT) in order to determine the best method for the
identification of S. thermophilus and some enterococci based
on RAPD-PCR patterns.

MATERIALS AND METHODS

Bacterial strains. A total of 138 strains of thermophilic streptococci from
several sources (Table 1) were identified at the species or genus level using phe-
notypic and/or genotypic tests as S. thermophilus (79 strains), Streptococcus sali-
varius (1 strain), Streptococcus spp. (9 strains), E. faecium (11 strains), E. faecalis
(25 strains), Enterococcus durans (2 strains), Enterococcus gallinarum (2 strains),
and Enterococcus spp. (9 strains).

RAPD-PCR assay. The RAPD-PCR conditions used with primer XD9
(59GAAGTCGTCC) were described previously (23). Since the objective of this
work was identification at the species level rather than strain typing, this primer
was selected because it resulted in reproducible (.95% similarity in replicate
runs performed with the same strain) patterns with 5 to 14 bands (Fig. 2) and had
a slightly lower discrimination index than primer XD8 (23). The sizes of all bands
were visually recorded by three trained operators.

Use of cluster analysis for the classification of RAPD-PCR patterns. Hierar-
chical cluster analysis (unweighted pair group method with arithmetic means [UP-
GMA]) was carried out on the matrix of similarity data obtained using the
formula of Nei and Li (24):

Fxy 5 2nxy/(nx 1 ny)

where Fxy is the proportion of the reproducible bands common to the patterns
compared, nxy is the number of bands shared by both strains, and nx 1 ny is the
total number of reproducible bands in both strains.

Comparison of supervised ANNs for the identification of thermophilic strep-
tococci. Three supervised ANNs (MLP, RBF, and BN) (Fig. 1) were initially
compared for their ability to identify S. thermophilus, E. faecalis, and E. faecium

TABLE 1. List of microbial strains used in this study

Groupa Species Strain(s)b

a Streptococcus thermophilus CNRZ: 302; NCDO: 573T, 821, 822, 1968; CRAA: 45, 51, 207, 208, 221, 226, 229, 251, 256,
263, 261, 267, 268, 284, 286, 288, 289, 292, 297, 299, 303, 305, 308, 315, 327, 333; DBPZ:
S0205, S0403, S0405, S0502, S0505, S0605, S0804, S0902, S1004, S1203, S1304, S1404,
S1503, S1601, S1703, S1804, S2103, SY; DISAABA: CF1, CF4, LC29, L1, LP25, LP30,
LP45, LP75; IMAUN: 7C17, 8C6, 8C11, 9C4, 9C9, 9C9a, Y1C, Y5C, Y13C

Enterococcus faecalis ATCC: 19433T; DBPZ: EF1; DISAABA: LC1, LC5, LC12, LC18, LC24, LC28, LC30,
LC31, LC36, LP16, LP21, LP26, LP36, LP51, LP77, LP79, LP81

Enterococcus faecium ATCC: 19434T; DISAABA: LC11, LC15, LC40, LP4, LP18a, LP42, LP68

b Streptococcus thermophilus DBPZ: S317, S901b; TH: 169T, 174T, 176T, 421T, 426T, 434T, 435T, 475T, 678T, 681T
Streptococcus salivarius DSMZ: 20560T

Streptococcus spp.c CRAA: 59, 75, 232, 240, 243, 244, 248, 252, 253
Enterococcus faecalis DBPZ: S211, S224, S228, S807a, S821b; TH: 536T
Enterococcus faecium DBPZ: S309; TH: 538T, 649T
Enterococcus durans TH: 481T, 640T
Enterococcus gallinarum TH: 479T, 564T
Enterococcus spp. DBPZ: S214, S222, S313, S314, S320, S818, S906c; TH: 512T, 514T

a a, strains used for building statistical models and ANNs; b, other strains.
b Strain sources: ATCC, American Type Culture Collection, Manassas, Va.; CNRZ, Centre National de la Recherches Zootechniques, Jouy-en-Josas, France;

CRAA, Consorzio per la Ricerca Applicata in Agricoltura, Faculty of Agriculture, Portici, Italy; DBPZ, Dipartimento di Biologia, Difesa, e Biotecnologie Agro-
Forestali, Potenza, Italy; DISAABA, Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Alimentari, Sassary, Italy; DSMZ, Deutsche Sammlung von
Mikroorganismen und Zelkulturen, Braunschweig, Germany; IMAUN, Istituto di Microbiologia Agraria, Università degli Studi di Napoli “Federico II,” Portici, Italy;
NCDO, National Collection of Dairy Organisms, now National Collection of Industrial and Marine Bacteria, Aberdeen, United Kingdom; TH, Veneto Agricoltura,
Istituto per la Qualità e le Tecnologie Agroalimentari, Thiene, Italy.

c Streptococcus spp. were not identified to the species level, but their phenotypes and genotypes were clearly different from those of S. thermophilus or enterococci.
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on the basis of simplified RAPD-PCR patterns with seven groups of bands as an
input. In fact, to obtain a reasonable compromise between reduction of the
amount of data for processing and preservation of information on strain diver-
sity, the gel was subdivided into seven zones (.2.7, 2 to 2.7, 1.6 to 2, 1 to 1.6, 0.75
to 1, 0.5 to 0.75, and ,0.5 kb) and bands in each zone were summed. All
networks had three output nodes, one for each species to be identified; a pattern
was identified as belonging to the species whose node gave the lowest output.
The MLP and the BN had similar architectures (seven input nodes, five hidden
nodes, and three output nodes; the number of hidden nodes was set using the
automatic node generation facility provided by the software) but different train-
ing strategies; a conjugate gradient algorithm was used to minimize the error sum
of squares between training examples and network outputs for the MLP, while
the algorithm used in BN minimized a cost function by using Bayesian statistics
and steepest descent (15; SPSS Neural Connection 2.0 User’s Guide). The RBF
had a completely different structure (Fig. 1); computations in the hidden layer
were performed by radial basis functions (thin-plate spline) which measured the
distance of the data from nodes (centers) in the data space, while neurons in the
output layer had a linear activation function. The number of centers (25 centers
were used in the final configuration) and their positions were adjusted during
training, a process which was therefore equivalent to finding the multidimen-
sional surface which provides the best fit for the training set.

Ninety-three strains whose identification was confirmed with both genotypic
and phenotypic tests were used for training and testing of the networks (Table 1,
group a). Since unequal numbers of patterns were available for the three species
(67 S. thermophilus strains, with 53 different patterns; 19 E. faecalis strains, with
11 patterns; and 8 E. faecium strains, with 8 different patterns), the patterns for
enterococci were randomly duplicated until approximately equal numbers of
examples were available for all species. Patterns were randomly assigned to
training (80% of the data, used by the supervised learning algorithms to obtain
error measures between network outputs and examples and to guide the adjust-
ment of synaptic weights or center coordinates), validation (10%, used during
training to validate the results and avoid overtraining and loss of generalization
ability), and test (10%, used to cross validate the performance of the network
after training) sets. Because of the approach used for training, the BN does not
need a validation set, since overtraining is automatically prevented by its learning
algorithm (15; SPSS Neural Connection 2.0 User’s Guide). Assignment of cases

and training were repeated 15 times, and the percentage of correct identifications
was scored.

Comparison of BN, LDA, and CT for the identification of thermophilic strep-
tococci. The same set of 93 RAPD-PCR patterns (188 patterns after random
duplication of E. faecium and E. faecalis patterns) was used to compare the
abilities of the best ANN selected in the previous experiment (BN) and two
multivariate statistical techniques (LDA and CT; the phi coefficient was used as
a loss function for CT) to identify S. thermophilus, E. faecalis, and E. faecium
from simplified (seven groups of bands; see above) RAPD-PCR patterns. To
evaluate the accuracies of the three methods and the effect of the size of the
sample used for training the ANN or for building the statistical models, patterns
were randomly assigned to two sets: a training set, which was used for building
the models, and a test set, which was used to evaluate model performance. The
size of the training set was decreased from 90 to 40% of the data set, and the size
of the test set was correspondingly increased from 10 to 60%. For each sample
size, random assignment of patterns and calculations were repeated five times,
and the percentages of correct identifications for both training and test sets were
scored.

To evaluate the robustness of the three techniques, two different approaches
were used: identification of unknown patterns (Table 1, group b, including strains
belonging to species not used during the training stage) and evaluation of the
correlation between the identification results for the same pattern read by dif-
ferent operators. The whole set of RAPD-PCR patterns (groups a and b in Table
1) read by a single operator was identified using the three techniques. In addition
to species assignment, probabilities (for LDA) and network outputs (for BN)
were also calculated. Moreover, identification results were estimated for each
pattern read by three different operators, and percentages of matching identifi-
cations were calculated.

Software. ANNs were developed using Neural Connection 2.0 (SPSS). Statis-
tical analysis and graphics were generated with Systat 7.0 for Windows (SPSS).

RESULTS

Use of RAPD-PCR with primer XD9 and cluster analysis for
the identification of thermophilic streptococci. RAPD-PCR

FIG. 2. Ethidium bromide-stained 1.5% (wt/vol) agarose gel displaying RAPD patterns of 32 strains of thermophilic streptococci obtained with
primer XD9 (59GAAGTCGTCC). Strain designations are shown above the lanes. Lane M, 1-kb DNA ladder (Gibco BRL) used as molecular size
marker.
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with a single primer (XD9), which yielded distinctive and re-
producible patterns with 5 to 14 bands (Fig. 2), was coupled
with cluster analysis; the combination was evaluated as a tech-
nique for the rapid identification of thermophilic streptococci.
The abridged dendrogram showing the similarity relationships
among the RAPD-PCR patterns for the 138 strains listed in
Table 1 is shown in Fig. 3. Five main clusters were found at
the 40% similarity level. Although almost all S. thermophilus
strains were found in cluster 3 (with the exception of strains
S317 and S901b, whose identity had be confirmed with pheno-
typic tests only), all the other clusters contained more than one
species. Therefore, the use of RAPD-PCR with primer XD9
and cluster analysis would allow the identification of S. ther-
mophilus but not that of E. faecalis or E. faecium.

Comparison of three supervised ANNs for the identification
of thermophilic streptococci from RAPD-PCR patterns. In or-
der to develop a simple, rapid, and inexpensive procedure for
the identification of S. thermophilus, E. faecalis, and E. faecium
using RAPD-PCR patterns obtained with primer XD9, three
supervised ANNs (MLP, RBF, and BN) (Fig. 1) were trained
to identify the three species using simplified RAPD-PCR pat-
terns. The RAPD patterns obtained from 93 strains whose
identification had been confirmed by both genotypic and phe-
notypic tests were used (Table 1). After class equalization by
random duplication of the patterns of the less-represented
species (E. faecium and E. faecalis), the patterns were ran-
domly assigned to training (80%), validation (10%), and test
(10%) sets. The assignment and the training of the networks
were repeated 15 times, and ANN performance was evaluated
as the percentage of correct identifications for the test set
(which had not been used for training). Although both the
MLP and the RBF correctly identified 98 to 100% of the
patterns of the training set, their performance for the test set
was sometimes significantly worse: the MLP correctly identi-
fied 84 to 100% of the patterns (median, 95%) of the test set,
while the corresponding values for the RBF were 73 to 100%
(median, 92%). In both cases, some S. thermophilus strains
were misidentified as E. faecium, while E. faecalis was always
identified correctly. The BN always identified correctly all the
patterns in both the training and the test sets and was therefore
chosen for further analysis.

Comparison of BN, LDA, and CT for the identification of
thermophilic streptococci. Two multivariate statistical tech-
niques, LDA and CT, are valuable alternatives to cluster anal-
ysis for the identification of strains. These techniques were
therefore compared to the BN for the identification of ther-
mophilic streptococci using simplified RAPD-PCR patterns.

In order to compare the performances of the three methods
and to evaluate the effect of the size of the training set on the
reliability of the results, 93 simplified RAPD-PCR patterns
(strains listed in Table 1, group a) were used after random
duplication for class equalization as described above. The re-
sulting patterns were randomly assigned to training and test
sets (the validation set is not needed for the BN); the size of
the training set was decreased from 90 to 40% of the whole
data set, while the size of the test set (used for cross validation)
was increased accordingly. The assignment and the training of
the network or the estimation of the statistical models was
repeated five times for each training set size. The results, in

terms of percentages of correct identifications for the test set,
are shown in Table 2.

The BN always identified correctly all the strains in the
training set. Even when the size of the training set was reduced
to 40% of the total (which resulted in the exclusion of many
unique patterns from the training set), the network identified
correctly more than 96% of the strains in the test set, thus
showing excellent generalization. With ANNs, there is no di-
rect way to estimate the relative effect of the input variables on
the output of the network. To identify the inputs which affected
the identification results the most, the following procedure was
used. Eight E. faecium patterns, 10 E. faecalis patterns, and 20
S. thermophilus patterns were selected, and the number of
bands in each band group of the pattern was systematically
increased or decreased by one or two (as long as this process
did not result in a negative number of bands); finally, the
resulting patterns were used as a run set for the BN trained
with the largest training set size. The effect of changing band
groups on identification depended on the original pattern. For
S. thermophilus, changes in the number of bands at ,1.6 or
.2.7 kb did not have any effect on identification, while changes
in the number of bands between 1.6 and 2.7 kb resulted in a
different identification. For E. faecium, increasing or decreas-
ing by two the number of any group of bands always resulted in
a change in identification. For E. faecalis, an increase in the
number of bands at .2.7 and 2 to 2.7 kb resulted in a change
in identification. Overall, changes in band groups between 0.75
and 1.6 kb had the lowest impact on identification. Of the 553,
180, and 211 artificial patterns generated for S. thermophilus,
E. faecium, and E. faecalis, only 24 (4.3%), 23 (13%), and 15
(7.1%) of the patterns, respectively, resulted in a change in
identification.

The performance of LDA was significantly affected by the
number of examples used to build the model. There were
.98% correct identifications for the training set, but with some
exceptions, performance during cross validation for the test set
was lower and was as low as 84% correct identifications when
smaller training sets were used. With LDA, the relative impor-
tance of input variables can be judged on the basis of the F
values for each variable. Band groups at .2.7, 1.6 to 2, and
,0.5 kb consistently had the highest discriminant value in
LDA for all training set sizes (with F values of 97.6, 93.4, and
42.64, respectively), while bands between 0.5 and 1 kb had the
lowest (F values of 7.6 and 3.4 for the two band groups in this
interval). On the basis of the between-groups F matrix, dis-
crimination of S. thermophilus from enterococci was relatively
clear-cut, while differentiation of E. faecalis from E. faecium
was more difficult. This result was also evident from the ca-
nonical score plot shown in Fig. 4. Discrimination between
S. thermophilus and enterococci occurred along the first canon-
ical factor, which explained 81.1% of the variance, while a
partial overlap of the 95% confidence ellipses for the E. fae-
calis and E. faecium groups occurred.

CT had the worst performance. A typical dichotomic key
generated by the CT procedure is shown in Fig. 5. Although
the procedure allowed us to find a simple heuristic rule for
identification of the three species (choices were made on the
basis of the same variables as those identified as most signifi-
cant in LDA and BN), the percentages of correct identifica-
tions for the training set were usually ,95% and the size of the
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FIG. 3. Abridged dendrogram showing the similarity relationships among RAPD-PCR patterns of 138 strains of thermophilic streptococci.
Percent similarity was calculated with the formula of Nei and Li (24), while clustering was carried out using UPGMA.
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training set severely affected performance for the test set, with
correct identifications as low as 88% in some cases. Moreover,
with smaller training sets, the identification rule was highly
dependent on the set used. While with most of the random
trials the rule for identification was that shown in Fig. 5, in a
few cases trees with a smaller number of branches (,1 band at
1.6 to 2 kb and ,1 band at .2.7 kb), with many S. thermophilus
strains being classified as E. faecium, were generated.

The performance of the three methods was also tested with
another set of strains, which included species not used in train-
ing the network and/or building the statistical models (Table 1,
group b). In fact, a good identification technique should allow
not only identification of the species used in the training and
building phase but also flagging of unknown species. Unfortu-
nately, CT do not provide any measure of the reliability of
identification and therefore systematically misidentified all
Streptococcus spp. and Enterococcus spp. listed in Table 1,
group b.

Both LDA and BN provide some measure of the reliability
of identification. In addition to calculating canonical scores
and distances to group centroids, LDA generates posterior
probabilities for identification. Table 3 shows a revised cross-
tabulation matrix in which the ability of LDA to differentiate
Streptococcus spp. and Enterococcus spp. from the three spe-
cies used in building the classification function is taken into
account. A fourth category (“other species”) was created to
include all strains identified by LDA as S. thermophilus, E. fae-
cium, and E. faecalis with a posterior probability of ,0.80.
With this criterion, the percentages of correct identifications
for E. faecium, E. faecalis, S. thermophilus, and other species
were, respectively, 64, 96, 91, and 26%. The last value reflects
the misidentification of most Streptococcus and Enterococcus
spp. Increasing or decreasing the posterior probability crite-
rion resulted in even worse results. The poor ability of LDA to
discriminate Streptococcus and Enterococcus spp. is also evi-
dent from the canonical score plot shown in Fig. 4, since their
patterns often fell within the 95% bivariate confidence ellipses
for the three species used to build the model (S. thermophilus,
E. faecium, and E. faecalis).

ANNs do not generate true probabilities for identification;
rather, each of the three output nodes (one for each species)
generates a numerical output when the network is exposed to
a pattern. The pattern is identified as belonging to the species
whose node had the lowest output (winning node). In a typical
situation for a clear-cut identification, the winning node has an

output close to 0, while the other two nodes have an output
close to 1; this situation was in fact true for most of the strains
used for training the network. The network will still provide an
output for patterns which are highly dissimilar from those used
during training, either because they belong to a different spe-
cies or because they are comparatively rare among one of the
species used for training, but the result will be ambiguous
values (far from 0 or 1) for two or more nodes.

To define a criterion for the definition of ambiguous iden-
tifications, the following approach was used. First, to obtain a
representation in two dimensions for the output of the BN
which would be comparable to the canonical score plot ob-
tained with LDA, a principal-component analysis was carried
out for the outputs of the three nodes. In the resulting score
plot (Fig. 6), the patterns belonging to strains identified as
E. faecium, E. faecalis, and S. thermophilus are more tightly
clustered than those in the canonical score plot generated with
LDA (Fig. 4) and, as a consequence, the 95% bivariate ellipses
for the three species are much smaller than with LDA. With a
single notable exception (S. salivarius DSM20560 was identi-
fied as E. faecium), all Streptococcus strains fell outside the
ellipses. E. durans and E. gallinarum strains were clearly dif-
ferentiated from E. faecium, E. faecalis, and S. thermophilus
strains by the BN; this finding was also obtained for most of the
enterococci, for which a conclusive identification based on in-
dependent testing (i.e., other than RAPD-PCR) was not avail-
able. However, two E. faecium strains (538T and 649T), a few
S. thermophilus strains (CNRZ302, L1, S0605, and NCDO573),
and one E. faecalis strain (536T), whose identification had
been confirmed by phenotypic and genotypic tests, were also
comparatively far from the ellipses. When the outputs for

FIG. 4. Canonical score plot of simplified RAPD-PCR patterns
obtained with primer XD9 for 138 strains of thermophilic streptococci.
The canonical scores were calculated by discriminant analysis for the
identification of S. thermophilus (E), E. faecalis (‚), and E. faecium
(M) using RAPD-PCR patterns for a set of 93 strains (Table 1, group
a). Other symbols: l, Streptococcus spp.; �, other enterococci. Open
symbols correspond to patterns used for building the model; closed
symbols correspond to patterns not used for building the model. The
95% confidence ellipses for the patterns of each species used for
building the model are also shown.

TABLE 2. Performance of a supervised ANN (BN), LDA, and CT
for the identification of S. thermophilus, E. faecalis, and E. faecium
using simplified RAPD-PCR patterns obtained with primer XD9

No. (%) of patterns
in the training set:

Median (range) % correct identifications
obtained witha:

BN LDA CT

169 (90) 100 (100–100) 100 (100–100) 96 (94–100)
158 (80) 100 (100–100) 100 (95–100) 97 (94–98)
132 (70) 100 (100–100) 95 (94–100) 98 (95–98)
113 (60) 100 (100–100) 96 (96–98) 96 (87–97)
94 (50) 99 (97–100) 95 (94–99) 93 (88–98)
75 (40) 97 (96–100) 91 (84–96) 96 (94–97)

a Values are for five replicate runs.
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strains lying far from the confidence ellipses of the three spe-
cies were examined, it was found that they had outputs of
.0.20 and ,0.80 for one or more output nodes. This criterion
was therefore used to build the cross-tabulation matrix shown
in Table 3. Accordingly, the percentages of correct identifica-
tions for E. faecium, E. faecalis, S. thermophilus, and other
species were, respectively, 82, 96, 95, and 83%.

In this work, RAPD-PCR patterns were visually examined
by trained human operators, rather than treated with image
analysis software. Since during visual reading different opera-
tors may introduce small errors in the patterns by misplacing or
ignoring bands, a factor that may affect the identification re-
sults, the 137 patterns were read by three operators and the
results were compared in terms of the number of patterns
which resulted in mismatching identifications when read by
different operators. Identifications for the three operators al-
ways matched the CT, probably because of the limited number
of features (only three of the band groups were used for iden-
tification) used by the procedure. With either the LDA or the
BN, the percentages of identifications which did not match
when the patterns were read by different operators were 0.9%
(operator 1 versus operator 2), 2.5% (operator 2 versus oper-
ator 3), and 4.2% (operator 1 versus operator 3), with identical
results for the two procedures. Most of the mismatching iden-
tifications corresponded to enterococci. Pearson’s r values be-
tween outputs of corresponding nodes for different operators
were very high (0.99), and the same was true for correlations
between posterior probabilities of corresponding species for
different operators with LDA. Therefore, errors introduced by
different operators in reading the patterns had only a minor
effect.

DISCUSSION

When RAPD-PCR is used for classification and typing, the
patterns obtained from amplification with two or three differ-
ent primers are usually combined (3, 7, 8, 21, 23, 28, 30, 31),
and the procedures for reading the patterns, calculating simi-
larity or distance measures, and clustering the patterns are

time-consuming and cumbersome when performed by human
operators or require expensive instrumentation or software.
In order to develop a rapid, inexpensive, robust, and reliable
method for identification at the species level of S. thermophilus,
E. faecium, and E. faecalis, we compared three multivariate
statistical techniques (cluster analysis, LDA, and CT) with
ANNs for the analysis of RAPD-PCR patterns generated with
a single primer (XD9).

Even though RAPD-PCR with two separate primers (XD8
and XD9) coupled to hierarchical cluster analysis was a pow-
erful and convenient tool for the classification and typing of
thermophilic streptococci of dairy origin (23), when primer
XD9 alone was used, only S. thermophilus strains could be
reliably separated from the other groups. This result may re-
flect a limitation of the procedures used for calculating simi-
larity measures and clustering or the low level of intraspecific
similarity due to the use of a single primer. Moreover, when
the purpose is identification rather than classification, cluster
analysis is less appropriate for the interpretation of the results

FIG. 5. Dichotomic key generated by CT for the identification of S. thermophilus, E. faecalis, and E. faecium using RAPD-PCR patterns for a
training set of 93 strains (Table 1, group a).

TABLE 3. Cross-tabulation matrix (true identification in rows,
predicted identification in columns) for identification

of the strains listed in Table 1 with LDA or BN

Method Organism
No. of strains of: Total no.

of strains

% Correct
identifica-

tionsEFM EFS ST OTH

LDAa EFM 7 3 0 1 11 64
EFS 0 24 0 1 25 96
ST 1 6 72 0 79 91
OTH 10 7 0 6 23 26

BNb EFM 9 0 0 2 11 82
EFS 0 24 0 1 25 96
ST 0 0 75 4 79 95
OTH 3 0 1 19 23 83

a A strain was scored as belonging to the other species (OTH) group if the
probability for identification as E. faecium (EFM), E. faecalis (EFS), and S.
thermophilus (ST) was ,0.80.

b A strain was scored as belonging to the other species group if the output for
the winning node (i.e., the node with the lowest output) was .0.20.
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than other multivariate statistical techniques (such as LDA
and CT) and supervised ANNs.

Three supervised ANNs (MLP, RBF, and BN) were com-
pared for the identification of S. thermophilus, E. faecalis, and
E. faecium using simplified RAPD-PCR patterns obtained by
pooling the bands in selected molecular weight ranges. This
procedure significantly reduced the amount of input data, thus
allowing the use of relatively small training sets, and had the
additional advantage of simplifying the process of reading the
band patterns. The size and composition of the training set are
both very important for the performance of ANNs. The min-
imum size and complexity of the training set (N) needed to
achieve a predefined error level have a complex relationship
with network architecture, but it has been suggested (15) that
a training set size of at least W/e cases (where W is the number
of free parameters [weight and biases] of the network and e is
the fraction of classification error allowed for the test data)
should be sufficient to obtain good generalization. Therefore,
to achieve 95% correct identifications for the test set, the N/W
ratio should be larger than 20. However, smaller training sets
can still provide acceptable results in pattern classification
tasks (15). In fact, small training sets have been used with
success in the identification of microorganisms using complex
input patterns (2, 5, 10, 11, 12, 14). In a recent study (1), the
issue of size and imbalance of training sets was addressed for
the identification of marine microalgae using flow cytometry
data and RBF. Even with very complex networks (7 input
nodes, 1 to 5 hidden nodes for each output node, and 20 to 60
output layer nodes), relatively small training sets were suffi-
cient to obtain comparatively high percentages of correct iden-
tifications: 50 and 100 to 200 training examples per species
were sufficient for networks trained to identify 20 and 40 to 60
species (with an N/W ratio of between ,0.5 and 1.4, depending
on the number of hidden nodes), respectively. Imbalance in the
training set (i.e., unequal numbers of training examples for
each species to be identified) severely affected the perfor-
mance of networks trained to identify 40 to 60 species but had
a much smaller effect on networks trained to identify 20 spe-
cies. Adjusting the network outputs to account for differences
between proportions of taxa in training and test data sets
improved the results (1).

In this work, the N/W ratios were 1.9 for the MLP and the
BN and 0.56 for the RBF. However, when only unique patterns
are accounted for, N/W ratios of 0.9 for the MLP and the BN
and 0.3 for the RBF are obtained. Even when approximately
equal numbers of patterns for each species were used for
training, the numbers of unique patterns for the species were
unbalanced, with more patterns available for S. thermophilus
than for E. faecium and E. faecalis. Over 15 replicate runs, the
BN showed the best performance and the RBF showed the
worst. This result may have been due to a number of factors,
including performance of the training algorithm and inade-
quacy of the training set. Both the MLP and the RBF had a
tendency to lose generalization ability because of overtraining,
as shown by the better performance for the training set (98 to
100% correct identifications) than for the validation and test
sets (73 to 100% correct identifications). The RBF, which had
the most unfavorable N/W ratio, may also have been more
affected by unbalanced training set composition than the other
networks. The ability of the BN to correctly identify all pat-

terns in the training and test sets was probably due to both a
favorable N/W ratio and a training strategy better suited than
the MLP convergence algorithm to prevent overtraining and to
cope with unbalanced training sets and partially overlapping
decision boundaries (15). An additional advantage of the BN is
that there is no need for a validation set, thus making more
data available for training. Thus, this network was chosen for
further study.

Since the size and composition of the sample used for build-
ing the model (training set) may affect the performance of both
ANNs and multivariate statistical techniques, the BN and two
multivariate statistical techniques (LDA and CT) were com-
pared for their ability to identify S. thermophilus, E. faecalis,
and E. faecium using training sets of decreasing sizes (from 90
to 40% of the available patterns). The BN significantly outper-
formed LDA and CT: the percentage of correct identifications
with the BN was always higher (usually 100%), and the results
were less dependent on the size of the training set. These
results are not surprising, since the superiority of ANNs over
conventional multivariate statistical techniques in classification
problems is well known (15) and has already been proven for
the identification of a number of microorganisms at the species
or strain level (2, 14, 34). However, it is remarkable how the
BN showed excellent generalization even when very small
training sets were used (N/W ratio of ,1.4, with many unique
patterns not being used for training). The robustness and fault
tolerance of the BN were also proven by its better ability to
discriminate unknown species (i.e., species not included in the
training set) compared to LDA and CT (even at the cost of a
slight reduction in the percentages of correct identifications for
the species used to train the network) and by the relative
insensitivity of the identification results to errors introduced by
reading of the RAPD-PCR patterns by different operators and

FIG. 6. Score plot for the principal-component analysis carried out
on the outputs of a BN trained to identify S. thermophilus (E), E.
faecalis (‚), and E. faecium (M) using RAPD-PCR patterns for a set
of 93 strains (Table 1, group a). The output for all 138 strains of Table
1 is shown. Other symbols: l, Streptococcus spp.; �, other enterococci.
Open symbols correspond to patterns used for building the model;
closed symbols correspond to patterns not used for building the model.
The 95% confidence ellipses for the patterns of each species used for
building the model are also shown.
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by artificial alteration of the number of bands for selected
patterns.

The misidentification of some E. faecium and E. faecalis strains
with all techniques may have been caused by the unbalanced
composition of the training set. However, S. thermophilus is by far
the species most frequently isolated in Italian cheeses produced
with thermophilic natural starter cultures, followed by E. faecalis
and E. faecium, while other species (E. durans, E. gallinarum,
Streptococcus uberis, and Streptococcus bovis) occur rarely (6, 13,
17, 22, 27); therefore, the risk of incorrect identifications is rela-
tively small in practice, even with a network trained to identify
three species only. A different training strategy, with the specific
inclusion of a fourth class in the training set (unknown species, as
proposed in reference 1, or random patterns, as proposed in
reference 26), may have resulted in further improvements in the
identification ability of the networks. The use of a single primer
and the massive simplification of the input (by grouping the bands
in seven groups in order to reduce the number of input features
and to simplify the task of gel reading by human operators) may
have contributed to reducing the discriminatory ability of RAPD-
PCR. However, we believe that simplification of the patterns had
only a minor effect on the classification abilities of LDA, CT, and
BN. In fact, even when complete band patterns were used in
cluster analysis, they did not result in any improvement in classi-
fication.

Even though the application of ANNs for the identification of
microorganisms using complex patterns (including electro-
phoretic patterns [5, 12]) is not new, the approach used in this
study provides the basis for a fast and inexpensive method for the
identification of thermophilic streptococci which can easily be
applied to other microorganisms. RAPD-PCR patterns can be
obtained in a matter of a few hours, starting directly from colonies
(compared to a few days with pulsed-field gel electrophoresis or
whole-cell protein analysis); the procedure used for reading the
patterns (summing the bands in molecular weight groups) can be
performed rapidly even by untrained operators; the software used
for building the neural networks is relatively inexpensive com-
pared to the current packages for automatic acquisition and clas-
sification of electrophoretic patterns; and the ANN, once trained,
can be used repeatedly for the identification of new patterns and
upgraded by introduction of new patterns for different species to
expand its identification capability. Finally, the identification pro-
cedure is robust, and incorrect assignment of bands to groups
usually causes only minor changes.
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